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Abstract: Underwater optical images are crucial in marine exploration. However, capturing
these images directly often results in color distortion, noise, blurring, and other undesirable
effects, all of which originate from the unique physical and chemical properties of under-
water environments. Hence, various factors need to be comprehensively considered when
processing underwater optical images that are severely degraded under complex lighting
conditions. Most existing methods resolve one issue at a time, making it challenging for
these isolated techniques to maintain consistency when addressing multiple degradation
factors simultaneously, often leading to unsatisfactory visual outcomes. Motivated by the
global modeling capability of the Transformer, this paper introduces TFCNet, a complex
hybrid-architecture network designed for underwater optical image enhancement and
restoration. TFCNet combines the benefits of the Transformer in capturing long-range
dependencies with the local feature extraction potential of convolutional neural networks,
resulting in enhanced restoration results. Compared with baseline methods, the proposed
approach demonstrated consistent improvements, where it achieved minimum gains of
0.3 dB in the PSNR and 0.01 in the SSIM and a 0.8 reduction in the RMSE. TFCNet exhibited
a commendable performance in complex underwater optical image enhancement and
restoration tasks by effectively rectifying color distortion, eliminating marine snow noise to
a certain degree, and restoring blur.

Keywords: multi-task underwater image restoration; hybrid architecture; Transformer
encoding; convolutional neural network decoding; denoising; deblurring

1. Introduction
Terrestrial resources are insufficient to meet the demands of human development.

Thus, the development of marine resources, which cover 71% of the Earth’s surface [1],
is crucial. Underwater robots are vital for exploring these resources, where underwater
optical images serve as the “eyes” of these robots, providing essential data and information
for researchers [2].

The underwater imaging environment is influenced by factors such as marine organ-
isms, suspended particles, and poor lighting conditions, which makes it more complex
than imaging on land. Underwater images often exhibit a low contrast, color distortion,
and blurred details [3]. The movement of underwater robots can further exacerbate these
issues, particularly due to particles, including marine organisms, floating feces, suspended
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sediments, and other inorganic matter. These particles vary in size, shape, and transparency.
Scattering occurs when underwater light encounters small particles and is reflected back to
the camera, resulting in a low contrast and blurriness in the captured images, as shown in
Figure 1. Underwater optical images exhibit color distortion and are influenced by many
impurities and motion blur. Consequently, these images cannot be directly used for target
detection and require additional restoration.

The underwater environment is complex and dynamic, with suspended particles, light
scattering, and light absorption, leading to color distortion and low contrast. The environ-
ment is also often accompanied by marine snow noise caused by plankton or sediment
particles. Therefore, multiple issues must be simultaneously considered when dealing
with severely degraded underwater optical images under complex lighting conditions,
including the removal of marine snow noise, the restoration of blurring, and the basic
color correction task. However, most of the existing methods focus on solving one problem
at a time. Therefore, these isolated techniques struggle to maintain consistency when
addressing multiple degradation factors simultaneously, and consequently, they do not
achieve the desired visual results [4].

Furthermore, datasets designed for the multi-task restoration of complex underwater
optical images are lacking. In particular, when dealing with varying lighting conditions,
marine snow noise levels, and water composition, existing datasets lack the diversity
required to represent diverse, complex scenarios, limiting the generalizability of current
research [5].

Existing methods for restoring underwater optical images typically focus on color
correction and enhancement rather than addressing impurity occlusion and blurriness
in real underwater images. Moreover, the lack of publicly available datasets further
complicates the restoration process [6]. To address these challenges, Mei et al. [7] proposed
the Underwater Image Enhancement Benchmark Dataset (UIEBD-Snow dataset) to explore
underwater optical image restoration involving impurities. However, datasets for restoring
underwater images affected by motion blur are lacking.

Figure 1. Schematic diagram illustrating the principle of underwater optical imaging.

Underwater image restoration is challenging, requiring color correction, impurity
removal, and compensation for motion blur [8]. From a global perspective, restoration
can be divided into two main parts: impurity removal and image enhancement. With the
widespread application of deep learning technology, most underwater image enhancement
and restoration methods often rely on pure convolutional neural network (CNN) struc-
tures or U-shape Transformer structures. A CNN offers several advantages. However, its
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small receptive field makes it challenging to capture global features. Conversely, visual
Transformers, such as U-shape Transformers, have been used for restoration tasks in un-
derwater imaging tasks based on their ability to capture global information [9]. However,
Transformers often lack the translation invariance and local correlation characteristics of
a CNN, consequently requiring a large volume of training data to surpass CNN’s perfor-
mance. Therefore, combining the Transformer with a CNN to optimize their advantages
and preserve global and local features is promising. Ordinary Transformer visual entities
vary considerably because different shooting angles of the same object can lead to notable
differences in binary images. Additionally, the performance of visual Transformers may
vary across different scenarios. When dealing with high-resolution, pixel-dense images,
the Vision Transformer model incurs a computational cost proportional to the square of the
pixels due to self-attention [10].

Given the above background, this article introduces TFCNet, a network that integrates
CNN-based local features and Transformer-based global representations. TFCNet incorpo-
rates the Transformer for encoding and CNN for decoding. TFCNet considerably enhances
the quality of underwater image restoration by combining the Transformer’s focus on
global information with the CNN’s ability to use underlying image features. Simultane-
ously, we propose an additional underwater image restoration dataset, UIEBD-Blur, by
building on the UIEBD-Snow dataset to account for blurring. TFCNet has demonstrated
promising results using the UIEBD-Snow and UIEBD-Blur datasets and can concurrently
perform color correction, denoising, and deblurring for underwater images. In summary,
the contributions of this article include the following:

1. This paper proposes TFCNet, a multi-task restoration method for underwater optical
images, which is based on a hybrid architecture. It integrates a Swin Transformer-
based encoder module with spatial adaptivity to efficiently capture global image
features. The decoder module, comprising a CNN without activation functions,
reduces computational complexity.

2. This paper introduces the UIEBD-Blur dataset, which was specifically designed for
motion blur recovery in underwater optical images. Experiments using the UIEBD-
Blur and UIEBD-Snow datasets demonstrated that TFCNet achieved superior visual
outcomes in marine snow noise removal and color correction.

3. This study validated the feasibility of TFCNet in enhancing and restoring complex
underwater optical images and its superiority to other methods. Ablation experiments
further investigated the effectiveness of the hybrid architecture by evaluating the
contributions of the Transformer-based encoder and CNN-based decoder within
the framework.

2. Related Works
In underwater image restoration research, scholars focus on image enhancement and

color correction techniques. These techniques can be categorized into three main types:
model-free, model-based, and deep learning-based methods. K. Iqbal et al. [11] proposed
an unsupervised color correction method for enhancing underwater images. This method
is based on color balancing and contrast correction of the RGB and HSI color models.
Hitam et al. [12] introduced the CLAHE method, which combines results from the RGB and
HSV color models using Euclidean norms. Fu et al. [13] developed a widely used classical
method based on retinex. Drews et al. [14] proposed Underwater DCP (UDCP), which ap-
plies adaptive DCP to estimate underwater scene transmission. Peng et al. [15] introduced
Generalized DCP (GDCP) for image restoration, incorporating adaptive color correction
into the image formation model. In addition, Mei et al. [16] proposed a method based
on the optical geometric properties. These methods enhance underwater image details;
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however, they often excessively amplify noise and distort colors, occasionally resulting in
over-enhancement. Fu et al. [17] proposed a network based on probabilistic methods to ob-
tain the enhancement distribution for degraded underwater images. Li et al. [18] developed
WaterGAN, a network based on the generative adversarial network (GAN), to generate
datasets of underwater images using air and depth pairings. These datasets are used for
the unsupervised pipeline-based color correction of underwater images. Wang et al. [19]
introduced UWdepth, a self-supervised model that obtains depth information from under-
water scenes using monocular sequences. This depth information is subsequently used to
enhance underwater images. Fabbri et al. [20] developed UGAN, a GAN-based model, to
improve underwater image quality. Han et al. [21] designed their method by leveraging
contrastive learning and generative adversarial networks to maximize the mutual infor-
mation between raw and restored images. Islam et al. [22] presented a model based on
conditional generative adversarial networks to enhance underwater images in real time. In
addition, Zhou et al. [23] researched underwater image enhancement using deep learning
techniques.

However, existing methods for enhancing underwater images only address color
correction and do not fully satisfactorily restore underwater images degraded by visual
impurities. This remains a challenge in the field. A few methods are available for re-
moving impurities and blurring from underwater images, and even fewer methods can
simultaneously enhance the image.

Jiang et al. [24] proposed a UDnNet network based on a GAN with skip connections
to model the mapping relationship in underwater optical images contaminated by marine
snow noise. This method generates marine-snow-free optical images from noisy inputs,
partially suppressing noise. However, its limitations include high computational costs and
lengthy training cycles. Sun et al. [25] introduced a CNN called NR-CCNet, which incorpo-
rates a recurrent learning strategy and an attention mechanism to address marine snow
noise. This approach reduces noise to some extent; however, its restoration performance
remains unsatisfactory. Sun et al. [26] developed a progressive multi-branch embedded
fusion network to further improve the performance. This framework uses a dual-branch hy-
brid encoder–decoder module equipped with a triple attention mechanism to fuse distorted
images and their sharpened versions, focusing on noisy regions and learning contextual
features. It progressively learns a nonlinear mapping from degraded inputs, and the final
output is refined and enhanced using a three-branch hybrid encoder–decoder module at
each stage. Nevertheless, the multi-branch architecture increases the model complexity,
and its effectiveness in marine snow noise removal remains limited because the network
primarily targets underwater optical image enhancement.

Furthermore, image enhancement and restoration methods developed for atmospheric
conditions also provide some valuable insights for marine snow noise removal.

The authors of [27] advocated for a revised median filter as a potent approach to
mitigate the effects of underwater contaminants on these images. DB-ResNet [28] is a
specialized structure, termed a “deep detail network”, which was specifically designed to
remove natural raindrop patterns from captured images. A deep residual network (ResNet)
is a parameter layer that encapsulates more complex image features and streamlines the
network’s structure by reducing the mapping distance between the input and output
features. Other authors [29] proposed a progressive optimization residual network (Pro-
gressive ResNet (PRN)) and a progressive recurrent network (PReNet) for image de-raining.
Ren et al. [29] introduced PRN and a progressive recurrent network (PReNet) for image
deraining. Maxim [30] is the latest MLP-based U-Net backbone network that combines
global and local perceptual fields and can be directly applied to high-resolution images.
Restormer [31] is an efficient Transformer that incorporates several pivotal enhancements
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in the design of its improved multi-head attention and feed-forward networks. Multi-stage
progressive restoration network (MPRNet) [32] is an innovative, collaborative design with
a multi-stage structure aimed at learning the recovery features of degraded inputs while
decomposing the entire recovery process. MPRNet learns context-dependent features using
an encoder–decoder architecture and subsequently combines them with high-resolution
branches that better preserve local information.

These methods are highly competitive in natural image restoration in the air; however,
land-based and underwater imaging models cannot be used interchangeably. Sato et al. [33]
proposed an underwater image restoration dataset multi-scale residual block (MSRB),
which only performs underwater image denoising and cannot perform color correction. Mei
et al. [7] proposed a lightweight baseline named UIR-Net, which simultaneously recovers
and enhances underwater images while achieving notable recovery results. However, it
still encounters limitations in color correction.

3. Method
Achieving satisfactory results for complex underwater optical image enhancement and

restoration tasks using either a single Transformer architecture or a single convolutional
neural network (CNN) structure is challenging.

To address these challenges, a hybrid architecture model is proposed in this study.
This approach aims to maximize the local features and global representations by leveraging
the strengths of the Transformer and CNN structures. The proposed multi-task restoration
network, TFCNet, which is based on this hybrid architecture, is illustrated in Figure 2.

Figure 2. The structure of TFCNet; it is divided into a Transformer encoder and CNN decoder.

3.1. The Overall Structure of TFCNet

TFCNet integrates the strengths of the Transformer and CNN models. Transformers
focus on global information but often overlook details at low resolutions, which impedes
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the decoder’s ability to restore the pixel size, frequently leading to coarse results. Con-
versely, CNN models can effectively compensate for this limitation of Transformers. Thus,
combining these two models presents greater advantages.

The entire TFCNet network adopts a hierarchical design encompassing eight stages.
Initially, the encoder section serves as the core of TFCNet. Each stage begins by reducing
the resolution of the input feature map through the Swin Transformer and downsampling
layers, executing downsampling and progressively expanding the receptive field to capture
global information. The encoder initially applies four stages of Swin Transformer struc-
tures to the input image, embedding image blocks obtained through the CNN into the
feature map, necessitating positional encoding. Subsequently, the features extracted by the
Transformer are passed on to the decoder, which uses conventional transposed convolution
upsampling to restore the image pixels.

The overall processing pipeline is as follows: the underwater optical image requiring
enhancement and restoration is the TFCNet network input. Considering the UIEBD-Blur
dataset as an example, where I_blur represents the complex underwater optical image to be
restored, the processing steps of the TFCNet encoder module can be simplified as follows:

The first-layer encoder module, based on the Swin Transformer architecture, is com-
puted as follows:

FM_1 = f _1(W_1∗I_blur + B_1). (1)

The encoder modules in the second to fourth layers, based on the Swin Transformer
architecture, are computed as follows:

FM_i = f _i(W_i ∗ FM_(i − 1) + B_i), (2)

where W_i represents the weight matrix of the i-th layer encoder module based on the Swin
Transformer architecture, B_i denotes the bias term of the i-th layer encoder module, and
f _i corresponds to the activation function of the i-th layer encoder module.

Subsequently, the processing steps of the decoder module, which is based on the CNN
architecture, can be simplified as follows:

The first-layer decoder module, based on the CNN architecture, is computed
as follows:

FM_5 = g_1(V_1 ∗ FM_4 + C_1). (3)

The decoder modules in the second to fourth layers, based on the CNN architecture,
are computed as follows:

FM_(i + 4) = g_i(V_i ∗ FM_(i + 3) + C_i), (4)

where V_i represents the weight matrix of the i-th layer decoder module based on the
CNN architecture, C_i denotes the bias term of the i-th layer decoder module, and g_i
corresponds to the activation function of the i-th layer decoder module.

The output layer of TFCNet is as follows:

I_deblur = W_o ∗ FM_8 + B_o, (5)

where W_o is the weight matrix, and B_o is the bias of the output layer.
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3.2. Encoding Network Design

The TFCNet network comprises four encoder modules based on the Swin Transformer
structure and adopts a five-stage hierarchical design. Each stage progressively reduces
the resolution of the input feature map and gradually expands the receptive field, akin
to a CNN. The structure of the module, as Figure 3 illustrates, includes layer normaliza-
tion, feature fusion normalization, a multi-layer perceptron, and an attention mechanism
module.

In addition to the fundamental Swin Transformer module, a feature fusion normaliza-
tion module is incorporated to further refine the layer-normalized features. Specifically,
the image features processed via layer normalization undergo max and average pooling
to extract high-frequency and global features, respectively. These features are then fused
through stacking and convolutional operations. Subsequently, a sigmoid function is applied
to obtain feature weight information, which is used to derive the feature information after
suppressing the marine snow noise.

Figure 3. Schematic diagram of the TFCNet encoder module based on the Swin Transformer architec-
ture.

The computational workflow of each Swin Transformer-based encoder module in the
TFCNet network is detailed as follows:

ẑl = W − MSA
(

MaxAvg
(

LN
(

zl−1
)))

+ zl−1, (6)

where W − MSA() represents the window-based multi-head self-attention operation,
MaxAvg() denotes the min-max normalization, and LN() corresponds to the
layer normalization.

zl = MLP
(

LN
(

ẑl
))

+ ẑl , (7)

where MLP() represents the multi-layer perceptron operation.

ẑl+1 = SW-MSA
(

MaxAvg
(

LN
(

zl
)))

+ zl , (8)

where SW − MSA() represents the shifted window-based multi-head self-attention operation.

zl+1 = MLP
(

LN
(

ẑl+1
))

+ ẑl+1, (9)

where ẑl and zl represent the output features of the attention mechanism modules in
each module. Finally, after further downsampling operations, the corresponding feature
information is the output.
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3.3. Decoding Network Design

The system becomes correspondingly complex because the complex multi-task restora-
tion of underwater optical images necessitates simultaneous color correction, marine snow
noise elimination, and blur restoration. Under such circumstances, nonlinear activation
functions, such as Sigmoid, ReLU, GELU, and Softmax, are not essential [34]. Moreover,
these nonlinear activation functions can be replaced by multiplication or directly removed.
This ensures effective image enhancement and restoration and reduces the computational
cost of the network. Guided by this concept, the TFCNet network constructs the decoder
module based on a baseline network that does not require activation functions [34].

Figure 4 reveals that in this decoder module, the structure before upsampling has
eliminated the nonlinear functions. The Gated Linear Units, which can introduce nonlinear
computations, are replaced by the product of two feature maps, denoted as ϕ and θ. This
reduces the computational complexity of the decoder module to a certain degree, thereby
enhancing the efficiency of TFCNet.

Figure 4. Schematic diagram of the CNN decoder in TFCNet based on the activation function-free
network baseline.

The Adaptive Spatial Channel Attention (ASCA) mechanism was introduced to ac-
celerate the convergence speed of the model, mitigate the risk of overfitting, and stabilize
the model. Building on the SCA attention mechanism, a batch normalization layer was
added between two convolutional layers, speeding up the convergence of the model and
reducing the overfitting risk. Additionally, extra convolutional layers and ReLU activation
functions were incorporated to enhance the model’s nonlinear expressive capacity and aid
in extracting more complex features. Figure 5 illustrates the ASCA mechanism.

X represents the input feature map, and dw_channel denotes the number of channels.
Divide the number of channels of the input feature map by 2 for in_channels and by 4 for
mid_channels. W_i and B_i represent the weight and bias of the i-th conventional layer,
respectively, and BN_i represents the i-th batch normalization layer. Finally, ReLU stands
for the ReLU activation function.

Figure 5. Schematic diagram of the Adaptive Spatial Channel Attention (ASCA) in TFCNet.
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Adaptive average pooling:

x_pooled = AdaptiveAvgPool2d(x). (10)

The computation formula for the i-th convolutional layer is as follows:

x_conv_i = Conv2d(x_pooled, W_i, B_i). (11)

The i-th batch normalization layer:

x_bn_i = BN1(x_conv_i). (12)

The i-th ReLU activation function:

x_relu_i = ReLU(x_bn_i). (13)

Output: x_relu_i.

3.4. Loss Function

Regarding the loss function, this article adopts the commonly used loss functions in
underwater image restoration, L1 and LSSIM, as follows:

LALL = k1L1 + k2LSSIM, (14)

where k1 = 0.8 and k2 = 0.2.
The L1 loss (Mean Absolute Error (MAE)) is the mean distance between the predicted

value x of the model and the true value y. We used the L1 loss to measure the pixel level
loss between the reference network and the training results as follows:

L1 =
1
N ∑ |x − y|. (15)

The SSIM (structural similarity) loss is considered an indicator for luminance, contrast,
and structure, incorporating human visual perception. We can obtain it as follows:

SSIM(x, y) = [l(x, y)α ∗ c(x, y)β ∗ s(x, y)λ)]

=
(2µxµy + c1)(2δxδy + c2)

(µ2
x + µ2

y + c1)(δ2
x + δ2

y + c2)
, (16)

where l(x, y), c(x, y), and s(x, y) are as follows:

l(x, y) =
2µxµy + c1

µ2
x + µ2

y + c1

c(x, y) =
2δxδy + c2

δ2
x + δ2

y + c2

s(x, y) =
δxy + c3

δx + δy + c3
. (17)

Therefore, we can determine LSSIM as follows:

LSSIM = 1 − SSIM(x, y). (18)
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4. Experimental Datasets and Discussion
4.1. Introduction to the Experimental Datasets

Experimental comparative analysis was conducted on two datasets, UIEBD-Snow and
UIEBD-Blur, to verify the effectiveness and generalizability of the proposed method, which
a focus on the impurities and motion blur in the underwater image restoration process.
Both datasets are based on the commonly used public dataset UIEBD [35]. Figure 6 presents
a schematic diagram of the UIEBD-Snow dataset construction.

Figure 6. Schematic diagram of the UIEBD-Snow dataset construction.

Detail blurring in underwater optical images is expressed as a blur effect along a
direction, with the extent of blurring being related to underwater imaging conditions and
the speed of the underwater vehicle. Gaussian blur is a uniform blur treatment without
direction. However, a directional kernel (motion blur kernel) was created in this study
and combined with Gaussian blur to achieve a directional Gaussian blur effect, thereby
simulating motion blur. The Gaussian function is the core concept of Gaussian blur. Figure 7
illustrates the entire dataset construction process.

Figure 7. Schematic diagram of UIEBD-Blur dataset construction.

4.2. Training Parameter Settings

During the experimental process, the dataset was partitioned into 80% for training,
10% for testing, and 10% for validation. All other deep learning-based comparison methods
were trained and tested using this identical data-splitting ratio.

The TFCNet model is an end-to-end trained model configured to perform underwater
optical image enhancement and restoration tasks, encompassing color correction, denoising,
and deblurring. Specifically, the Adam optimizer with an initial learning rate of 1 × 10−4 was
used. Considering the model depth, the warm-up strategy gradually improved the learning
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efficiency. The network was trained on a 256× 256 image patch that was randomly cropped
from training images. The batch size was 4. The learning rate was 1× 10−4. The number of
epochs was 200. The model was trained on one 4090 GPU, which could be completed in 4 h.

4.3. Comparison with State-of-the-Art Methods for Underwater Image Enhancement
4.3.1. Qualitative Evaluations

The proposed method enhances and restores complex underwater optical images, in-
cluding color correction. The experimental comparison includes four methods designed for
underwater optical image enhancement with demonstrated effectiveness: Deepwave [36],
PUIENet [17], Shallow [37], and FUnIE-GAN [22]. Additionally, three state-of-the-art meth-
ods for general optical image enhancement and restoration, DGUNet [38], MPRNet [32],
and UIRNet [7], were included.

The comparative results of TFCNet and other methods on the UIEBD-Snow dataset in
Figure 8 reveal that the methods solely designed for underwater optical image enhance-
ment were ineffective at eliminating marine snow noise in complex underwater optical
images. These methods focus on color correction and achieved suboptimal results owing
to the interference of the marine snow noise. In contrast, DGUNet [38], MPRNet [32],
and UIRNet [7] demonstrated some success in mitigating the marine snow noise while
achieving satisfactory results in color correction. However, when examining the details
compared with the ground truth data of UIEBD-Snow, the results processed by the TFCNet
network aligned more closely with the reference ground truth, where it outperformed
other comparative methods overall. Furthermore, the experimental results on the UIEBD-
Snow dataset indicate that the methods that exclusively target underwater optical image
enhancement were insufficient for restoring the complex underwater scenes.

Figure 8. Comparison of TFCNet and the contrastive methods on the UIEBD-Snow dataset: (a) raw;
(b) Deepwave [36]; (c) PUIENet [17]; (d) Shallow [37]; (e) FUnIE-GAN [22]; (f) DGUNet [38]; (g) MPR-
Net [32]; (h) UIRNet [7]; (i) TFCNet; (j) GT.

Figure 9 illustrates that Deepwave [36], PUIENet [17], and Shallow [37] demonstrated
strong color correction capabilities while training the UIEBD-Blur dataset. However, these
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methods are limited when removing blur. MPRNet [32], DGUNet [38], and UIRNet [7]
improved the color correction and blur removal. Nevertheless, when considering the
overall results, the output processed by the TFCNet network aligned more closely with the
reference ground truth data provided by the UIEBD-Blur dataset, where it demonstrated
superior performance.

A comprehensive comparative analysis of Figures 8 and 9 reveals that TFCNet, leveraging
its hybrid architecture, effectively enhanced and restored the complex underwater optical
images on the UIEBD-Snow and UIEBD-Blur datasets. This included fundamental color
correction, more challenging marine snow noise elimination, and blur restoration tasks.

Figure 9. Comparison of TFCNet and the contrastive methods using the UIEBD-Blur dataset: (a) raw;
(b) Deepwave [36]; (c) PUIENet [17]; (d) Shallow [37]; (e) FUnIE-GAN [22]; (f) DGUNet [38]; (g) MPR-
Net [32]; (h) UIRNet [7]; (i) TFCNet; (j) GT.

4.3.2. Quantitative Evaluation

We used standard metrics, such as PSNR, SSIM, and RMSE, to validate the superiority
of our approach for full-reference evaluation [39]. The PSNR quantifies the pixel-level
fidelity by measuring the logarithmic ratio between the maximum signal power and noise
distortion, making it sensitive to the absolute error magnitude. The SSIM evaluates the
perceptual quality through luminance, contrast, and structure comparisons, emphasizing
local pattern preservation and visual perception. The RMSE provides a direct, interpretable
measure of the average pixel-wise deviation, which is particularly useful for physical
accuracy validation in scientific applications. Additionally, we used the UCIQE [40] and
UIQM for no-reference evaluation, which are commonly used for assessing underwater
image quality. The UIQM combines colorfulness, sharpness, and contrast measures to
predict human visual preferences, while the UCIQE focuses on color distribution properties.

In the experimental evaluation using the UIEBD-Snow dataset in Table 1, the highest
score is highlighted in red, and the second-highest score is highlighted in blue. The
results processed using the TFCNet network had the best values in the PSNR, SSIM,
and RMSE metrics, where it outperformed other methods. TFCNet did not attain the
highest score or the second-highest score in the UIQM and UICQE metrics; nonetheless, its
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performance remained close to the highest score. The four methods, namely, Deepwave [36],
PUIENet [17], Shallow [37], and FUnIE-GAN [22], demonstrated distinct advantages when
evaluated using the UIQM and UICQE metrics. However, when reference images are
available, the UIQM and UCIQE prioritize perceptual enhancements over physical fidelity,
often assigning higher scores to artificially processed images despite significant deviations
from the ground truth, where handcrafted features fail to capture the structural distortions
measurable by the SSIM or RMSE. In addition, combined with a qualitative analysis, these
methods are limited to underwater optical image enhancement and are ineffective in marine
snow noise elimination tasks, making them unsuitable for underwater optical image multi-
task restoration. In contrast, the TFCNet network excels in these scenarios, producing
cleaner, more natural results with fine-grained textures, as shown in Figure 8.

Table 1. Quantitative comparison of TFCNet and the contrastive methods on the UIEBD-Snow
dataset.

Method PSNR↑ SSIM↑ RMSE↓ UIQM↑ UICQE↑
Deepwave [36] 15.374 0.556 23.276 4.620 0.507

PUIENet [17] 16.926 0.723 18.030 4.594 0.606

Shallow [37] 17.006 0.707 18.904 4.354 0.633

FUnIE-GAN [22] 15.619 0.486 24.762 5.106 0.596

DGUNet [38] 20.027 0.775 15.048 3.400 0.598

MPRNet [32] 20.711 0.795 14.068 3.363 0.597

UIRNet [7] 21.200 0.807 13.142 3.610 0.596

Ours 21.527 0.811 12.321 4.399 0.599

In evaluating the experimental results of the UIEBD-Blur dataset, as in Table 2, the
highest score is highlighted in red, and the second-highest score is highlighted in blue.
TFCNet demonstrated exceptional performance, surpassing other methods in the PSNR,
SSIM, and RMSE. It achieved the second-highest score in the UIQM metric. TFCNet
did not achieve the highest or second-highest score in the UICQE metric compared with
Deepwave [36] and PUIENet [17]. Nonetheless, its results were close to the highest score.
Combined with the performance Figure 9 illustrates, TFCNet performed the best, where it
effectively restored underwater optical images with motion blur.

Table 2. Quantitative comparison of TFCNet and the contrastive methods using the UIEBD-Blur
dataset.

Method PSNR↑ SSIM↑ RMSE↓ UIQM↑ UICQE↑
Deepwave [36] 18.172 0.574 20.236 3.336 0.596

PUIENet [17] 17.668 0.585 21.130 3.218 0.594

Shallow [37] 17.693 0.572 20.831 3.108 0.581

FUnIE-GAN [22] 17.772 0.564 21.230 2.667 0.550

DGUNet [38] 20.069 0.698 15.297 2.891 0.562

MPRNet [32] 20.175 0.738 15.184 2.883 0.582

UIRNet [7] 21.509 0.775 13.628 3.054 0.584

Ours 21.810 0.787 12.755 3.239 0.589
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Qualitative and quantitative analyses were conducted on the experimental results
using the UIEBD-Snow and UIEBD-Blur datasets. Based on the comprehensive analysis of
Figures 8 and 9 and Tables 1 and 2, our method considerably color-corrected and eliminated
impurity and motion blur for underwater images, demonstrating practical relevance.

4.4. Ablation Study

Ablation experiments were conducted by designing four comparative models with
approximately the same number of parameters to validate the effectiveness of the Swin
Transformer-based encoder module and the activation-free CNN-based decoder module.
These models include a Vision Transformer-based encoder combined with a CNN-based
encoder, a pure CNN-based encoder–decoder structure, an original Swin Transformer-based
encoder–decoder structure, and the proposed TFCNet network proposed in this paper.

A visual study was performed on the UIEBD-Snow dataset for a qualitative analysis.
Figure 10 reveals that the model combining a Vision Transformer-based encoder with a
CNN-based encoder did not effectively learn the mapping relationships, where it exhibited
shallow learning capabilities during training and testing and performed poorly on chal-
lenging samples. The pure CNN-based encoder–decoder structure struggled to model the
mapping between color and target images, which left considerable room for improvement
in detail restoration. Combining the original Swin Transformer-based encoder with the
CNN-based decoder improved the enhancement and restoration of underwater optical
images to some extent; however, its overall performance remained measurably inferior
to TFCNet.

As in Table 3, TFCNet demonstrated substantial performance improvements over
other combinations, with increases of approximately 0.5 and 0.01 in the PSNR and SSIM,
respectively. The results obtained using TFCNet’s hybrid architecture, combined with the
visual performance in Figure 10, were more aligned with human visual perception and
restored the complex underwater optical images better.

Figure 10. Ablation study of TFCNet hybrid-encoding mode.

To validate the design efficacy of the proposed CNN decoder in TFCNet, here we
performed ablation experiments by substituting the decoder module with two alternatives,
MPRNet [32] and UIRNet [7]. As demonstrated in Figure 11 and Table 4, the proposed TFC-
Net exhibited superior performance in both the qualitative and quantitative assessments.
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Table 3. Quantitative results of the ablation study in TFCNet hybrid-encoding mode.

Parameter Vision
Transformer + CNN

CNN
Encoder + Decoder

Swin Transformer
Encoder + Decoder TFCNet

PSNR 19.383 21.000 21.035 21.527

SSIM 0.742 0.792 0.801 0.810

Table 4. Quantitative results of the ablation study of CNN performance in hybrid-encoding mode.

Parameter Swin Transformer
+ CNN(MPRNet)

Swin Transformer
+ CNN(UIRNet) TFCNet

PSNR 21.037 21.091 21.525

SSIM 0.796 0.798 0.808

Figure 11. Ablation study of CNN performance in hybrid-encoding mode.

4.5. Application Testing

This section involves application tests using the training results from the TFCNet
network on the UIEBD-Snow and UIEBD-Blur datasets to validate the effectiveness of
TFCNet.

Initially, we focused on assessing a subset of images from the MSRB dataset [33], which
is used for marine snow noise elimination in underwater optical imagery, along with its
extended version, the MSIRB dataset [7]. Figure 12 illustrates the evaluation results, which
involve real underwater optical images affected by marine snow noise.

Figure 12 reveals that the TFCNet method accomplished color correction in underwater
optical images while also eliminating marine snow noise to a degree in the MSRB and
MSIRB datasets. However, a closer examination revealed that the evaluation results of the
TFCNet method on the MSRB dataset were less satisfactory than those obtained using the
MSIRB dataset. This discrepancy can be attributed to the limitations in the datasets. When
the morphology of marine snow noise does not align with the marine snow models in the
dataset, the noise elimination is constrained, which is an issue that necessitates further
in-depth research in future studies.
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Figure 12. Assessing the performance of TFCNet on the MSRB and MSIRB datasets.

In addition, this section selected some complex underwater optical images that ex-
hibited genuine marine snow noise and blurring phenomena for testing, with the results
depicted in Figure 13. As illustrated, TFCNet performed color correction on underwater op-
tical images (images (a) and (b)) while simultaneously mitigating the marine noise to some
extent. However, the noise elimination effect was suboptimal for the densely concentrated
dynamic turbidity presented in image (b). Furthermore, for images (c) and (d), TFCNet
achieved color correction in the underwater optical imagery while partially addressing
the blurring effects. Nevertheless, it remained limited in restoring severe motion blur, as
exemplified in image (d).

In summary, TFCNet demonstrated commendable performance on the UIEBD-Snow
and UIEBD-Blur datasets. Nonetheless, the processing outcomes for real-world images
revealed certain inadequacies. This observation underscores the inherent limitations of
the UIEBD-Snow and UIEBD-Blur datasets discussed in this section, indicating a need for
further refinement and enhancement in subsequent research.

Figure 13. Evaluation of TFCNet’s performance on real complex underwater optical images.
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5. Conclusions
This paper proposes TFCNet to address the limitations of existing image enhancement

and restoration methods in handling the multi-task restoration of complex underwater
optical images. The advantages of Transformers and the importance of hybrid architectures
are discussed. The lack of relevant datasets was tackled by constructing the UIEBD-Blur
dataset for blur restoration, extending the publicly available UIEB dataset designed for
underwater optical image enhancement and restoration tasks. TFCNet leverages the
strengths of Transformer and CNN architectures by integrating the global-information-
focused Transformer structure with the CNN, which extracts low-level image features. This
integration achieved the multi-task enhancement and restoration of complex underwater
optical images. The experimental results demonstrated the superior performance of TFCNet
on the UIEBD-Snow and UIEBD-Blur datasets, where it performed effective color correction
while eliminating marine snow noise and addressing blur issues. Compared with the
baseline methods, the proposed approach demonstrated consistent improvements, where
it achieved minimum gains of 0.3 dB in the PSNR and 0.01 in the SSIM and a 0.8 reduction
in the RMSE. This demonstrates its effectiveness in addressing the multi-task restoration
challenges of complex underwater optical imaging to a considerable extent. Future work
will focus on addressing the limitations identified in Section 4.5, particularly through
methods such as domain adaptation, data augmentation, or transfer learning to improve
the restoration effect of complex underwater images.
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